IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

Christian Maxeiner, christian.maxeiner@hotmail.de
Christian Stahl, stahlchr@gmail.com

In [29]: dimport nltk
import tagutils; reload(tagutils)
from tagutils import *
from IPython.core.display import HTML
from nltk.corpus import brown
import random as pyrand
from tagutils import *

Evaluation Framework

In [30]: sents = list(brown.tagged sents())
n = len(sents)
test = sorted(list(set(range(0,n,10))))
training = sorted(list(set(range(n))-set(test)))
training set = [sents[i] for i in training]
test set = [sents[i] for i in test]

In [31]: print len(training set)
print len(test set)
print test set[0]
print size(training set)

51606

5734

[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ('Grand', 'JJ-TL'"),
('Jury', 'NN-TL'), ('said', 'VBD'), ('Friday', 'NR'), ('an', 'AT'"),
('investigation', 'NN'), ('of', 'IN'), ("Atlanta's", 'NP$'), ('recent', '31J]'"),
('primary', 'NN'), ('election', 'NN'), ('produced', 'vBD'), ('*°', '""°'), ('no',

IATI)’ (IevidenceI, INNI), (IIIIII, IIIIII), (IthatI' ICSI)' (IanyI, IDTII)’
('irregularities', 'NNS'), ('took', 'VBD'), ('place', 'NN'), ('.', '.")]
51606

In [32]: tO = nltk.DefaultTagger('NN")

tl nltk.UnigramTagger(training set, backoff=t0)
t2 nltk.BigramTagger(training set, backoff=t1)
t2.evaluate(test set)

Out[32]: 0.9234475055210225

In [33]: print t2.tag(['house'])
[("house', 'NN')]

Classifier-Based Tagging

1von 13 25.01.2013 14:34

[Python Notebook

2von 13

http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f036f4...

In [34]: dimport nltk.tag.api
help(nltk.tag.api.TaggerI)

Help on class TaggerI in module nltk.tag.api:

class TaggerI(builtin .object)

A processing interface for assigning a tag to each token in a list.
Tags are case sensitive strings that identify some property of each
token, such as its part of speech or its sense.

Some taggers require specific types for their tokens. This is
generally indicated by the use of a sub-interface to " "TaggerI .
For example, featureset taggers, which are subclassed from

" "FeaturesetTagger ', require that each token be a "~ featureset .

Subclasses must define:
- either ““tag() " or ““batch tag() " (or both)

Methods defined here:

batch tag(self, sentences)
Apply " “self.tag() " to each element of *sentences*. 1I.e.:

return [self.tag(sent) for sent in sentences]

evaluate(self, gold)
Score the accuracy of the tagger against the gold standard.
Strip the tags from the gold standard text, retag it using
the tagger, then compute the accuracy score.

:type gold: list(list(tuple(str, str)))
:param gold: The list of tagged sentences to score the tagger on.
:rtype: float

tag(self, tokens)
Determine the most appropriate tag sequence for the given
token sequence, and return a corresponding list of tagged
tokens. A tagged token is encoded as a tuple " (token, tag)™

:rtype: list(tuple(str, str))

Data descriptors defined here:

_ dict
dictionary for instance variables (if defined)

__weakref
list of weak references to the object (if defined)

Implement a new tagger based on classifiers.

When applying a classifier, you need to transform the input into a feature vector. In this case, we are trying to predict
P(t,] < input words >). How do we do this?

For a simple unigram tagger, we are estimating P(t,lw,). lfw, € V = {1,..., N}, where Vis a vocabulary of size N
representing each word as an integer, then the input feature vector might be a binary vector X= (x1...xn) where

Xi = Oiy,

25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

For a simple bigram tagger, we are estimating something like P(%,|w,,f,—1), which we could similarly represent as a
concatenation of two large binary input vectors.

However, such a brute force approach may not work very well because we have a very high dimensional input vector and
classifiers often need a lot of training data. We are free to preprocess the data in any form we like in order to get better
feature vectors.

Here are some ideas:

use the posterior probabilities for tags returned by a unigram and bigram tagger as feature vectors

use possible grammatical categories and semantic categories from Wordnet as feature vectors

use simple features like capitalization, word length, and position in sentence

provide information about word frequency in input

"hash" the large range of possible words V down to a much smaller vocabulary

same as before, but do the hasing somewhat more intelligently: leave all the stop words alone, but has down the
content words

¢ do the "hashing" in some way that's informed by Wordnet

Note that in order to be able to tag using the algorithms we have described, you can use tags assigned to previous words,
but you cannot use tags assigned to subsequent words.

Try to beat the bigram-with-backoff tagger above, using the same evaluation paradigm. Your tagger should implement the
standard NLTK tagging API.

Two classifiers to try are logistic regression and decision tree classifiers. You can use implementations from the sklearn
package.

First, import some useful stuff.

In [35]: from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from nltk.corpus import wordnet
from collections import Counter,defaultdict

Because the NLTK unigram and bigram taggers only return single tags withot probabilities, create a general tagger class that
returns probabilities.

In [36]: class ProbCounterTagger:
def init (self):
self.counts = defaultdict(Counter)
def addTrainingData(self, td):
for token,tag in td:
self.counts[token].update([tag])
def train(self):
self.probs = {}
for token,tagcounts in self.counts.items():
n = sum(tagcounts.values())
self.probs[token] = {tag:count*1.0/n for tag,count
in tagcounts.items()}
def getProbs(self, token):
if token in self.probs:
return self.probs[token]
return {}

Define some methods to create different bigrams from sentences.

3von 13 25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

4 von 13

In [37]: def make bigrams(sent):
sent = ['']+sent
return zip(sent,sent[1:])

def make tagged bigrams(tagged sent):
return zip(make bigrams([w for w,t in tagged sentl]),
[t for w,t in tagged sent])

def make bigrams with tag(tagged sent):
shifted tags = [''] + [t for w,t in tagged sent]
return zip(shifted tags, [w for w,t in tagged sent])

def make tagged bigrams with tag(tagged sent):
return zip(make bigrams with tag(tagged sent),
[t for w,t in tagged sent])

print make bigrams(['Hi', "here','I"','am','."])
print make tagged bigrams(training set[0][:5])
print make tagged bigrams with tag(training set[0][:5])

", 'Hi'), ('Hi', 'here'), ('here', 'I'), ('I', 'am'), ('am', '.")]

'Y, 'The'), 'AT'), (('The', 'jury'), 'NN"'), (('jury', 'further'), 'RBR'),
further', 'said'), 'VBD'), (('said', 'in'), 'IN')]

'Y, 'The'), 'AT'), (('AT', 'jury'), 'NN"), (('NN', 'further'), 'RBR'),
RBR', 'said'), 'vBD'), (('vVBD', 'in'), 'IN')]

—~— e~ ——
~ e~ o~~~
- =~ -

Define a general classifier tagger class which trains on the probabilities returned by Unigram and Bigram Taggers.
Explanation of the attributes:
trainingset: A list of tagged sentences to train.

use_also_bigrams: If true, not only the probabilities returned from a Unigram Tagger are used as training data, but also the
probabilities returned by a Bigram Tagger.

combine_ngram_tagger_results: Only used if use_also_bigrams is true. If this is true, the probabilities of the Unigram and
Bigram Tagger are not not concatenated into one big feature vector, but the two featurevectors are added component-wise.

use_prev_tag: Only used if use_also_bigrams is true. If this is true, bigrams are built like (previous tag + actual word), and
not like (previous word + actual word).

sklearn_classifier: A classifier-class from sklearn which should be used for training and tagging.

25.01.2013 14:34

[Python Notebook

In [38]:

5von 13

http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f036f4...

class ClassifierTaggerl(nltk.tag.api.TaggerI):
def init (self, trainingset, use also bigrams,

combine ngram tagger results, use prev_tag,

sklearn classifier):

self.use also bigrams = use _also _bigrams

self.combine ngram tagger results=combine ngram tagger results
self.use prev tag = use prev tag

train a probability tagger with unigrams
self.unigram_tagger = ProbCounterTagger()
for sent in trainingset:

self.unigram tagger.addTrainingData(sent)
self.unigram tagger.train()

eventually also train a probability tagger with bigrams
if(use_also _bigrams):
self.bigram tagger = ProbCounterTagger()
for sent in trainingset:
if self.use prev_tag:
self.bigram_tagger.addTrainingData(
make tagged bigrams with tag(sent))
else:
self.bigram tagger.addTrainingData(
make tagged bigrams(sent))
self.bigram tagger.train()

create list of possible tags
tagged words = []
for sent in trainingset:
tagged words += sent
self.taglist = list(set([t for w,t in tagged words]))

train a classifier with the tagger probabilities
classifier training = []
classifier target = []
for sent in trainingset:
bigs = make tagged bigrams(sent)
for i in range(len(bigs)):
((prev,word),tag) = bigs[il]
if self.use prev tag:
if i ==
fv = self.getFeatureVector('', word)
else:
fv = self.getFeatureVector(bigs[i-1][1], word)
else:
fv = self.getFeatureVector(prev,word)
classifier training.append(fv)
classifier target.append(self.taglist.index(tag))
self.classifier = sklearn classifier()
self.classifier.fit(classifier training, classifier target)

A feature vector is created from Unigram Tagger probabilities:
In a feature vector as long as the list with possible tags,

the according places are filled with the probabilities returned
from the Unigram Tagger.

def getFeatureVectorUnigram(self, token):

probs = self.unigram tagger.getProbs(token)

fv = zeros(len(self.taglist))

for tag in probs:
fv[(array(self.taglist))==tag] = probs[tag]

return fv

25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

First try how the classfier-based tagger performs with logistic regression.

Test this tagger and compare its performance to the normal unigram and bigram tagger.

In [39]: ctll = ClassifierTaggerl(training set[:1000], False, False,
False, LogisticRegression)
ctl2 = ClassifierTaggerl(training set[:1000], True, False,
False, LogisticRegression)
ctl3 = ClassifierTaggerl(training set[:1000], True, True,
False, LogisticRegression)

dt = nltk.DefaultTagger('NN")

ut = nltk.UnigramTagger(training set[:1000])

bt = nltk.BigramTagger(training set[:1000], backoff=ut)
ut2 = nltk.UnigramTagger(training set[:1000], backoff=dt)
bt2 = nltk.BigramTagger(training set[:1000], backoff=ut2)

In [40]: print 'Classifier Tagger (LR with Unigram Tagger probabilities):'
print str(ctll.evaluate(test set[:500]))
print 'Classifier Tagger (LR with concatenated Unigram and Bigram'
print 'Tagger probabilities):'
print str(ctl2.evaluate(test set[:500]))
print 'Classifier Tagger (LR with added Unigram and Bigram Tagger'
print 'probabilities):'
print str(ctl3.evaluate(test set[:500]))
print 'Unigram Tagger:'
print str(ut.evaluate(test set[:500]))
print 'Bigram Tagger with Unigram backoff:'
print str(bt.evaluate(test set[:500]))
print 'Bigram Tagger with Unigram and Default (NN) Tagger backoff:'
print str(bt2.evaluate(test set[:500]))

Classifier Tagger (LR with Unigram Tagger probabilities):
0.778871740287

Classifier Tagger (LR with concatenated Unigram and Bigram
Tagger probabilities):

0.784903317367

Classifier Tagger (LR with added Unigram and Bigram Tagger
probabilities):

0.741706581515

Unigram Tagger:

0.736029803087

Bigram Tagger with Unigram backoff:

0.740819584886

Bigram Tagger with Unigram and Default (NN) Tagger backoff:
0.782685825794

Seems like concatenating the probabilities from Unigram and Bigram Tagger is a better idea than adding them.
All classifier taggers perform better than the normal Unigram and Bigram Taggers.

However, when the Default Tagger is added as last backoff, then only the Classifier Tagger with concatenated feature
vectors is still a little bit better.

Now check how the performance changes when decision trees are used instead of logistic regression.

6 von 13 25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

7 von 13

In [41]: ctl4 = ClassifierTaggerl(training set[:1000], False, False,
False, DecisionTreeClassifier)
ctl5 = ClassifierTaggerl(training set[:1000], True, False,
False, DecisionTreeClassifier)
ctle = ClassifierTaggerl(training set[:1000], True, True,
False, DecisionTreeClassifier)

In [42]: print 'Classifier Tagger (DT with Unigram Tagger probabilities):
print str(ctl4.evaluate(test set[:500]))
print 'Classifier Tagger (DT with concatenated Unigram and'
print 'Bigram Tagger probabilities):'
print str(ctl5.evaluate(test set[:500]))
print 'Classifier Tagger (DT with added Unigram and Bigram Tagger'
print 'probabilities):
print str(ctl6.evaluate(test set[:500]))
print 'Unigram Tagger:'
print str(ut.evaluate(test set[:500]))
print 'Bigram Tagger with Unigram backoff:'
print str(bt.evaluate(test set[:500]))
print 'Bigram Tagger with Unigram and Default (NN) Tagger backoff:'
print str(bt2.evaluate(test set[:500]))

Classifier Tagger (DT with Unigram Tagger probabilities):
0.73824729466

Classifier Tagger (DT with concatenated Unigram and

Bigram Tagger probabilities):

0.390189817279

Classifier Tagger (DT with added Unigram and Bigram Tagger
probabilities):

0.460262551002

Unigram Tagger:

0.736029803087

Bigram Tagger with Unigram backoff:

0.740819584886

Bigram Tagger with Unigram and Default (NN) Tagger backoff:
0.782685825794

The Decision Tree Classifier does not work very well with Unigram+Bigram probabilities. When only Unigram Tagger
probabilities are used, it is slightly better than the normal Unigram Tagger (but loses against the normal bigram tagger with
unigram backoff).

Check if there is any difference when creating bigrams differently: Instead of (previous word, actual word), use (previous tag,
actual word).

25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

In [43]: ctl7 = ClassifierTaggerl(training set[:1000], True, False,
True, LogisticRegression)

print 'Bigram Tagger with Unigram and Default (NN) Tagger backoff:'
print str(bt2.evaluate(test set[:500]))

print 'Classifier Tagger (LR with concatenated Unigram and'

print 'Bigram (word,word) Tagger probabilities):

print str(ctl2.evaluate(test set[:500]))

print 'Classifier Tagger (LR with concatenated Unigram and'

print 'Bigram (tag,word) Tagger probabilities):

print str(ctl7.evaluate(test set[:500]))

Bigram Tagger with Unigram and Default (NN) Tagger backoff:
0.782685825794

Classifier Tagger (LR with concatenated Unigram and

Bigram (word,word) Tagger probabilities):

0.784903317367

Classifier Tagger (LR with concatenated Unigram and

Bigram (tag,word) Tagger probabilities):

0.739843888593

The performance goes down. Probably because (tag,word)-bigrams are less specific than (word,word)-bigrams.

Create another classifier with an arbitrary 'getFeatures'-method so that some other features can be tested in a simple way.

8von 13 25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

In [44]: class ClassifierTagger2(nltk.tag.api.TaggerI):
def init (self, trainingset, getFeatures method,
sklearn classifier):
self.getFeatures = getFeatures method
self.classifier = sklearn classifier()

create list of possible tags
tagged words = []
for sent in trainingset:
tagged words += sent
self.taglist = list(set([t for w,t in tagged words]))

extract features and train classifier
classifier training = []
classifier target = []
for sent in trainingset:
for i in range(len(sent)):
classifier training.append(self.getFeatures(
sent[i][0], (i+1.0)/(len(sent)+0.0)))
classifier target.append(self.taglist.index(
sent[i][1]))
self.classifier.fit(classifier training, classifier target)

def tag(self, sent):
result = []
for i in range(len(sent)):
result.append(self.taglist[int(self.classifier.predict(
self.getFeatures(sent[i],
(i+1.0)/(len(sent)+0.0)))[0]1)1)
return result

evaluation method does not work, implement own
def evaluate(self, gold):
correct = 0
total = 0
for sent in gold:
words = [w for w,t in sent]
tags = [t for w,t in sent]
pred = self.tag(words)
for i in range(len(tags)):
if(tags[i]==pred[i]):
correct = correct+l
total = total+l
return (1.0*correct)/(1.0*total)

First try a very simple feature "vector" just containing one feature: The index of the word in the big list of possible words.

9von 13 25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

In [45]: tswordlist = []
for sent in training set:
for w,t in sent:
tswordlist.append(w)
tswordlist = list(set(tswordlist))
print len(tswordlist)

def getWordIndex(word,):
fv =[]
if word in tswordlist:
fv.append(tswordlist.index(word))
else:
fv.append(len(tswordlist))
return fv

53369

In [46]: ct27 = ClassifierTagger2(training set[:1000],

getWordIndex, LogisticRegression)

ct28 = ClassifierTagger2(training set[:1000],
getWordIndex, DecisionTreeClassifier)

print 'Word index with logistic regression:'

print str(ct27.evaluate(test set[:500]))

print 'Word index with decision trees:'

print str(ct28.evaluate(test set[:500]))

Word index with logistic regression:
0.15016852936

Word index with decision trees:
0.764502394891

The decision tree performs much better than the logistic regression classifier. This is because the features (the index of the

word) have really nothing to do with the type of the word (which we want to predict). The tree can still perform good because
it just grows very big.

Now try a another simple feature vector, containing:

Word length, position of the word in the sentence (relative to sentence length), first letter capital or not, relation of #vowels to
wordlength.

10 von 13 25.01.2013 14:34

[Python N

11 von 13

otebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f036f4...

In [47]: # returns the number of vowels in the given word
def getNumberOfVowels(word):
num vowels = 0
for c in word.lower():
if(c=='a' or c=='e' or c=='i' or c=='0' or c=='u'):
num_vowels = num_vowels + 1
return num_vowels

def getSimpleFeatures(word, sentpos):
fv =[]
fv.append(sentpos) # position of the word in the sentence
fv.append(len(word)) # length of the word
if(word[0].isupper()): # is the first letter upper case?
fv.append(1)
else:
fv.append(0)
nv = getNumberOfVowels(word)
number of vowels / word length
fv.append((nv+0.0)/(len(word)+0.0))
return fv

In [48]: ct21 = ClassifierTagger2(training set[:1000],

getSimpleFeatures, LogisticRegression)

ct22 = (ClassifierTagger2(training set[:1000],
getSimpleFeatures, DecisionTreeClassifier)

print 'Simple features with logistic regression:'

print str(ct2l.evaluate(test set[:500]))

print 'Simple features with decision trees:'

print str(ct22.evaluate(test set[:500]))

Simple features with logistic regression:
0.352492460529

Simple features with decision trees:
0.352315061203

As expected, logistic regression now performs better and the decision tree performs worse.

But now they are both quite bad. There is too little information (for solving the tagging problem) in the extracted features.

One meaningful feature should be the ending of the word. Check if this improves the performance.

25.01.2013 14:34

IPython Notebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f03614...

In [49]: # returns the sum of the ASCII values of the last three characters
of the word
def getWordEnding(word):
if(len(word) >= 3):
return ord(word[-1]) + ord(word[-2]) + ord(word[-3])
elif(len(word) == 2):
return ord(word[0]) + ord(word[1])
elif(len(word) == 1):
return ord(word[0])
else:
return 0

def getBetterFeatures(word, sentpos):
fv = getSimpleFeatures(word, sentpos)
fv.append(getWordEnding(word))
return fv

In [50]: ct29 = ClassifierTagger2(training set[:1000],

getBetterFeatures, LogisticRegression)

ct210 = ClassifierTagger2(training set[:1000],
getBetterFeatures, DecisionTreeClassifier)

print 'Better features with logistic regression:'

print str(ct29.evaluate(test set[:500]))

print 'Better features with decision trees:'

print str(ct210.evaluate(test set[:500]))

Better features with logistic regression:
0.423895689196

Better features with decision trees:
0.660280290935

As expected, the performance is improved with one more meaningful feature, the ending of the word.

Now add a simple hash of the word to the feature vector: Just the sum of all the ASCII values of the characters of the word.

In [51]: # returns a simple hash for a given word: the sum of
all its ASCII characters
def getSimpleHash(word):
h=20
for c in word:
h += ord(c)
return h

def getSimpleFeaturesWithHash(word, sentpos):
fv = getSimpleFeatures(word, sentpos)
very simple hash: sum of all ASCII values
fv.append(getSimpleHash(word))
return fv

12 von 13 25.01.2013 14:34

[Python N

13von 13

otebook http://127.0.0.1:8888/7cc4f556-e081-4a80-91b9-2f036f4...

In [52]: ct23 = ClassifierTagger2(training set[:1000],

getSimpleFeaturesWithHash, LogisticRegression)

ct24 = (ClassifierTagger2(training set[:1000],
getSimpleFeaturesWithHash, DecisionTreeClassifier)

print 'Simple features with hash with logistic regression:'

print str(ct23.evaluate(test set[:500]))

print 'Simple features with hash with decision trees:'

print str(ct24.evaluate(test set[:500]))

Simple features with hash with logistic regression:
0.390278516942

Simple features with hash with decision trees:
0.62755011531

Now the decision tree classifier is better. The reason is the same as with the word index: the very different hashes for
different words lead to a very big tree. This is not a nice decision tree, but it performs better than the logistic regression.

To check this assumption, now use an additional hash function (found in the internet) that produces even more different

hashes. The decision tree should be as good as with the word index, and logistic regression should be really bad.

In [53]: def getOtherHash(word):
h = 5381
for ¢ in word:
h = ((h << 5) + h) + ord(c)
return h

def getSimpleFeaturesWith2Hashes(word, sentpos):
fv = getSimpleFeatures(word, sentpos)
very simple hash: sum of all ASCII values
fv.append(getSimpleHash(word))
more complicated hash
fv.append(getOtherHash(word))
return fv

In [54]: ct25 = ClassifierTagger2(training set[:1000],

getSimpleFeaturesWith2Hashes, LogisticRegression)

ct26 = ClassifierTagger2(training set[:1000],
getSimpleFeaturesWith2Hashes, DecisionTreeClassifier)

print 'Simple features with hash with logistic regression:'

print str(ct25.evaluate(test set[:500]))

print 'Simple features with hash with decision trees:'

print str(ct26.evaluate(test set[:500]))

Simple features with hash with logistic regression:
0.0416888415824

Simple features with hash with decision trees:
0.737005499379

Now the logistic regression works even worse and the decision tree works even better.

In general, classifiers need feature vectors that contain information that is in some way related to what should be predicted.
If there is no relation at all, decision trees are still good, but then they are nothing more than a big index structure for all the

possible words.

25.01.2013 14:34

