
In [16]:

Training Data

In [2]:

Posteriors and Conditionals

Let's start by defining some useful little functions.

In [60]:

import nltk
import tagutils; reload(tagutils)
from tagutils import *
from IPython.core.display import HTML
from nltk.corpus import brown
import random as pyrand
from collections import Counter,defaultdict
from tagutils import *

sents = list(brown.tagged_sents())
pyrand.shuffle(sents)
training_set = sents[:-1000]
test_set = sents[-1000:]

c = Counter([1,2,3,3,3])
def posterior(c):
 """Given a `Counter`, compute an equivalent posterior (represented
 as a dictionary. This basically just normalizes."""
 n = sum(c.values())
 return {k:v*1.0/n for k,v in c.items()}
def pmax(c,default=None):
 """Given a dictionary, returns the key corresponding to the
 maximum value. Useful for finding $\arg\max_c P(c|x)$."""
 if c is None: return default
 if len(c)==0: return default
 return max([(v,k) for k,v in c.items()])[1]
print posterior(c)
print pmax(c)

{1: 0.20000000000000001, 2: 0.20000000000000001, 3: 0.59999999999999998}
3

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

1 von 10 05.12.2012 16:32

In [137]:

With these definitions, we can trivially compute a unigram model.

In [65]:

In [66]:

A Simple "Greedy Bigram Tagger"

The simplest "bigram" tagger uses a probabilistic model (this actually isn't usually called a "bigram tagger"; see below).

What we actually want to find is the most likely tag sequence given a sequence of input words .
Assuming that (some special, "empty" symbol), we can write under a Markov assumption:

The best tag sequence is the one that maximizes the posterior probability of the entire sequence.

However, there is another question we can ask, namely what the most likely tag is at each position. Due to the Markov
property, this is really very easy to answer for this models since it is just given by:

Note that this local tagging may not even result in a tag sequence with non-zero probability.

In [67]:

class Conditional:
 """Given a set of pairs (u,v), compute
 estimates of $P(v|u)$, returning a posterior
 distribution given u."""
 def train(self,pairs):
 counts = defaultdict(Counter)
 for k,v in pairs:
 counts[k].update([v])
 posteriors = {}
 for k,v in counts.items():
 posteriors[k] = posterior(v)
 self.posteriors = posteriors
 def __getitem__(self,k):
 return self.posteriors.get(k,None)

cs = Conditional()
cs.train(brown.tagged_words()[:1000])

cs["to"]

Out[66]: {'IN': 0.2857142857142857, 'TO': 0.7142857142857143}

P(| ,)Tn Wn Wn−1

. . .T1 TN . . .W1 WN
= ϵWi

P(. . . | . . .) = P(| ,)T1 TN W1 WN ∏i Ti Wi Wi−1

= arg P(| ,)Ti maxTi Ti Wi Wi−1

def words(tagged):
 return [w for w,t in tagged]
def tags(tagged):
 return [t for w,t in tagged]

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

2 von 10 05.12.2012 16:32

In [68]:

In [69]:

In [70]:

In [71]:

In [77]:

In [78]:

In [83]:

Recursive "Greedy" Decoding

Instead of modeling the probability distribution of a tag given previous words, we can also model the probability distribution

def bigrams(sent):
 sent = ['']+sent
 return zip(sent,sent[1:])

def sentences_bigrams(sentences):
 for sent in sentences:
 for b in zip(bigrams(words(sent)),tags(sent)):
 yield b

list(sentences_bigrams(brown.tagged_sents()[:2]))[:10]

Out[70]: [(('', 'The'), 'AT'),
 (('The', 'Fulton'), 'NP-TL'),
 (('Fulton', 'County'), 'NN-TL'),
 (('County', 'Grand'), 'JJ-TL'),
 (('Grand', 'Jury'), 'NN-TL'),
 (('Jury', 'said'), 'VBD'),
 (('said', 'Friday'), 'NR'),
 (('Friday', 'an'), 'AT'),
 (('an', 'investigation'), 'NN'),
 (('investigation', 'of'), 'IN')]

bgs = Conditional()
bgs.train(sentences_bigrams(brown.tagged_sents()))

sent = "The man said something .".split()
bs = bigrams(sent)
print bs
ts = [pmax(bgs[b]) for b in bs]
print ts

[('', 'The'), ('The', 'man'), ('man', 'said'), ('said', 'something'),
('something', '.')]
['AT', 'NN', 'VBD', 'PN', '.']

def tagger1(sent):
 bs = bigrams(sent)
 ts = [pmax(bgs[b]) for b in bs]
 return zip(sent,ts)

HTML(stags(tagger1("The man said something .".split())))

Out[83]:
The man said something .

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

3 von 10 05.12.2012 16:32

of a tag given the current word and previous tags.

Let us estimate this probability distribution.

In [84]:

In [91]:

In [93]:

In [96]:

Given this distribution, we can now attempt to "decode" an input string.

A simple attempt is the following:

We start off with an emtpy tag (None) for and then update our estimate for the current tag using
.

P(| ,)Ti Wi Ti−1

def tbigrams(tagged):
 ws = words(tagged)
 ts = tags(tagged)
 return zip([None]+ts,ws)

s = brown.tagged_sents()[0]
tbigrams(s)

Out[91]: [(None, 'The'),
 ('AT', 'Fulton'),
 ('NP-TL', 'County'),
 ('NN-TL', 'Grand'),
 ('JJ-TL', 'Jury'),
 ('NN-TL', 'said'),
 ('VBD', 'Friday'),
 ('NR', 'an'),
 ('AT', 'investigation'),
 ('NN', 'of'),
 ('IN', "Atlanta's"),
 ('NP$', 'recent'),
 ('JJ', 'primary'),
 ('NN', 'election'),
 ('NN', 'produced'),
 ('VBD', '``'),
 ('``', 'no'),
 ('AT', 'evidence'),
 ('NN', "''"),
 ("''", 'that'),
 ('CS', 'any'),
 ('DTI', 'irregularities'),
 ('NNS', 'took'),
 ('VBD', 'place'),
 ('NN', '.')]

bgs2 = Conditional()
bs = [(b,t) for s in brown.tagged_sents() for (b,(w,t)) in zip(tbigrams(s),s)]
print bs[:5]
bgs2.train(bs)

[((None, 'The'), 'AT'), (('AT', 'Fulton'), 'NP-TL'), (('NP-TL', 'County'),
'NN-TL'), (('NN-TL', 'Grand'), 'JJ-TL'), (('JJ-TL', 'Jury'), 'NN-TL')]

bgs2[('VBD','some')]

Out[96]: {'DTI': 1.0}

T−1
arg P(| ,)maxTi Ti Wi Ti−1

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

4 von 10 05.12.2012 16:32

In [107]:

In [108]:

However, this kind of "greedy decoding" isn't really a good way of doing things.

What we really want to know is one of the following:

what is the tag sequence that maximizes
if we average over all possible tag sequences weighted by their conditional probabilities

, what is the marginal distribution of each ?

These are different questions. The correspond to

Viterbi decoding
the forward-backward algorithm

respectively.

We will cover these algorithms in more detail in the next lecture.

The TnT Tagger

The TnT Tagger is a widely used Hidden Markov Model Tagger developed by Thorsten Brants.

It uses a Hidden Markov Model composed of four components, connected via smoothing.

The formula for the probability estimation is roughly as follows:

The linear combination of the posterior probabilities is a more general way of handling missing data than backoff.

There are some details missing from the above formula related to normalization (these are very important details to make
things work).

The TnT tagger finds the maximum likelihood label sequence via Viterbi decoding (dynamic programming similar to the edit
distance algorithm).

def greedy_decode(words):
 tag = None
 result = []
 for w in words:
 ntag = pmax(bgs2[(tag,w)])
 result.append(ntag)
 tag = ntag
 return zip(words,result)

greedy_decode("The man said something .".split())

Out[108]: [('The', 'AT'),
 ('man', 'NN'),
 ('said', 'VBD'),
 ('something',
'PN'),
 ('.', '.')]

P(. . . | . . .)T1 Tn W1 Wn
. . .T1 Tn

P(. . . | . . .)T1 Tn W1 Wn Ti

P(|context) = () + (|) + (| , + (|)Tn λ1 P̂ Tn λ2 P̂ Tn Tn−1 λ3 P̂ Tn Tn−1 Tn−2 λ4 P̂ Tn Wn

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

5 von 10 05.12.2012 16:32

Equivalence to Hidden Markov Models

In a Hidden Markov Model, we think of hidden states giving rise to an observable label sequence.

In the case of tagging, the hidden states in question are parts of speech tags (in context), and the observable labels are
words.

In [138]:

If we use the tags as identities for the hidden states, we obtain this Hidden Markov Model corresponding to a bigram tagger.

open("hmm1.dot","w").write("""
digraph hmm1 {
rankdir = "LR";
subgraph cluster_labels {
AT -> NN -> VBD -> PP -> AT2 -> NN2;
}
subgraph cluster_text {
The -> fox -> jumps -> over -> a -> dog;
}
AT -> The; NN -> fox; VBD -> jumps; PP -> over; AT2 -> a; NN2 -> dog;
}
""")
!dot -Tpng hmm1.dot -o hmm1.png
figsize(12,5)
imshow(imread("hmm1.png"))

Out[138]: <matplotlib.image.AxesImage at 0x1816ccd0>

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

6 von 10 05.12.2012 16:32

In [132]:

So, in this equivalence between n-gram taggers and Hidden Markov Models, we view...

each tag becomes a hidden state
words are the symbols emitted from each state

Note that this is an odd kind of model, because the "hidden" state isn't really hidden at all, it's the label sequence we want to
infer based on the word sequence.

For a trigram tagger, the hidden states become pairs of tags, representing the two previous tags, and state transitions are
constrained so that "(U,V)" can only transition to "(V,X)".

Of course, these n-gram hidden states are really just a finite state approximation to a natural language grammar expressed
using the tags as non-terminal symbols, and using a simple probabilistic model for the non-terminal to terminal mappings.

open("hmm2.dot","w").write("""
digraph hmm2 {
rankdir = "LR";
subgraph cluster_states {
AT -> NN -> VBD -> PP -> NN;
PP -> AT;
}
AT -> the;
NN -> fox;
NN -> dog;
VBD -> jumps;
PP -> over;
the [shape=record];
fox [shape=record];
dog [shape=record];
jumps [shape=record];
over [shape=record];
}
""")
!dot -Tpng hmm2.dot -o hmm2.png
figsize(12,5)
imshow(imread("hmm2.png"))

Out[132]: <matplotlib.image.AxesImage at 0x18a25dd0>

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

7 von 10 05.12.2012 16:32

Weighted Finite State Transducers

A more general model in which the "hidden states" actually deserve their name is a transducer. In a transducer, each hidden
state has both a distribution of input symbols and a distribution of output symbols.

This might make a big differnce, since the statistics of tags and words may depend on the position in a sentence. That is,
there might be multiple "AT" nodes for different positions in the sentence.

The usual way of representing this is as weighted finite state transducers. In a weighted finite state transducer, we put input
and output symbols on the edges, not the states.

Here is a simple illustration of this:

In [134]:

We can now introduce more complicated state structures.

open("hmm3.dot","w").write("""
digraph hmm3 {
rankdir = "LR";
state -> state [label="AT -> The"];
state -> state [label="AT -> a"];
state -> state [label="NN -> fox"];
state -> state [label="NN -> dog"];
state -> state [label="VBD -> jumps"];
state -> state [label="PP -> over"];
}
""")
!dot -Tpng hmm3.dot -o hmm3.png
figsize(12,5)
imshow(imread("hmm3.png"))

Out[134]: <matplotlib.image.AxesImage at
0x16d308d0>

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

8 von 10 05.12.2012 16:32

In [136]: open("hmm3.dot","w").write("""
digraph hmm3 {
rankdir = "LR";
state -> state2 [label="AT -> The"];
state -> state2 [label="AT -> a"];
state -> state2 [label="NN -> fox"];
state -> state2 [label="NN -> dog"];
state -> state2 [label="VBD -> jumps"];
state -> state2 [label="PP -> over"];
state2 -> state [label="AT -> The"];
state2 -> state [label="AT -> a"];
state2 -> state [label="NN -> fox"];
state2 -> state [label="NN -> dog"];
state2 -> state [label="VBD -> jumps"];
state2 -> state [label="PP -> over"];
}
""")
!dot -Tpng hmm3.dot -o hmm3.png
figsize(12,8)
imshow(imread("hmm3.png"))

Out[136]: <matplotlib.image.AxesImage at
0x1b2fe210>

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

9 von 10 05.12.2012 16:32

For the simple n-gram taggers, the "hidden" state sequence was trivially given by the tag sequence.

Weighted finite state transducers offer a lot more power. How are we going to use this power?

One way we may be able to use this power is to do the following:

write down a full natural language grammar
approximate this grammar using finite state models
translate into a finite state transducer representing the non-terminals (labels) and terminals (words)

IPython Notebook http://127.0.0.1:8888/a76e99a0-5c12-43b1-9a80-efd9d5...

10 von 10 05.12.2012 16:32

