
HW1 - Reproduce Power Laws

In class, we talked about how various papers claim that Zipf's law is a general property of many discrete distributions.
Wikipedia Mathworld

The original paper by Belevitch examined this question theoretically. However, if this is true, it should be easy to reproduce
experimentally, namely by picking various discrete distributions, computing word frequency by rank, and plotting the result.

For working with the worksheet, remember that you can insert additional cells, both to add text and explanations, and to add
additional code cells. You can change existing cells if you like; they are just there to help you get started.

In [1]:

Start by generating a random sample. Here is an example of a function that generates a uniform sample. Obviously, this
particular choice of distribution will not reproduce Zipf's law, so you need to modify this to try to come up with distributions
that will reproduce Zipf's law.

In [2]:

In [3]:

Compute a histogram.

In [4]:

Compute frequency by rank.

In [5]:

from pylab import *
from collections import Counter

def generate_sample(nsamples,vocabulary_size):
    return array(rand(nsamples)*vocabulary_size,'i')

data = generate_sample(100000,1000)

histogram = Counter(data)

frequencies = sort(histogram.values())[::-1]

IPython Notebook http://127.0.0.1:8888/2c73ac4d-a28f-4497-9cc7-ee2a48...

1 von 3 27.11.2012 12:14



In [6]:

Plot the result.

In [7]:

Now wrap this up as a function.

In [8]:

Now define multiple distributions and plot their frequency ranks. Which ones give rise to power laws?

frequencies = sort(histogram.values())[::-1]
plot(log(1+arange(len(frequencies))),log(frequencies))

Out[6]: [<matplotlib.lines.Line2D at 0x23c1b50>]

plot(log(1+arange(len(frequencies))),log(frequencies))

Out[7]: [<matplotlib.lines.Line2D at 0x26bb850>]

def frequency_by_rank_plot(samples):
    histogram = Counter(samples)
    frequencies = sort(histogram.values())[::-1]
    plot(log(1+arange(len(frequencies))),log(frequencies))   

IPython Notebook http://127.0.0.1:8888/2c73ac4d-a28f-4497-9cc7-ee2a48...

2 von 3 27.11.2012 12:14



In [10]:

In [ ]:

In [ ]:

In [ ]:

def distribution(n,q):
    return array(rand(n)**-1.1,'i')
data = distribution(100000,1000) 
samples = Counter(data)
frequency_by_rank_plot(data)

IPython Notebook http://127.0.0.1:8888/2c73ac4d-a28f-4497-9cc7-ee2a48...

3 von 3 27.11.2012 12:14


