
NLPA Tutorial
Language Classes

Mayce Al Azawi

Language Classes

Overview of the following, but you need to
read more:
● Machine

○ finite state, pushdown automata, linear
bounded automata, turing machine

● Language
○ regular, context-free, context-sensitive,

phrase structure, uncomputable
● Algorithms

○ recursive descendant parsing, LR parsing

Finite State Automata
A finite-state automaton (FSA) is a 5-tuple M = (Q, Σ,δ , i ,
F), where Q is a finite set of states, i ∈ Q is the initial state,
F ⊆ Q is a set of final states, Σ is a finite alphabet and δ : Q
× (Σ ∪ {ε }) → 2Q is the transition function.

Example: Turnstile

Example of FSA

The example shows one that determines whether a binary
number has an odd or even number of 0's

Initial and Final state is S1
Accept binary string has
even number of 0's

Example:
1, 11, 11..., 00, 010, 1010,
10110, etc...

later FST

Pushdown automaton PDA

● a type of automaton that employs a stack
● PDA has:

○ a finite set which is called the stack alphabet
○ an initial stack symbol

● PDAs can use the top of the stack to
decide which transition to take.

● They can manipulate the stack as part of
performing a transition.

PDA

● can be used in parser design.
● The deterministic pushdown automaton

can handle all deterministic context-free
languages

● The nondeterministic version can handle
all context-free languages.

Turing machine

● is a device that manipulates symbols on a
strip of tape according to a table of rules

● on this tape are symbols which the
machine can read and write, one at a
time, using a tape head.

● has a finite, non-empty set of the tape
alphabet/symbols

● has a blank symbol occur on the tape

TM

● is simple
● can be adapted to simulate the logic of

any computer algorithm
● is particularly useful in explaining the

functions of a CPU

Linear Bounded Automaton
LBA

● is a restricted form of nondeterministic
Turing machine

● with a single tape and a single tape head
● tape is bounded by (some linear function of)

the length of the input, while it is unlimited in
the Turning machine

● is acceptors for the class of context-
sensitive languages

Must know the differences

● FSMs less memory, limited number of
states, less computational power than the
other

● PDA is more capable than FSM and less
than Turing machine

● More advantages and disadvantages: Read
more

● Applications: Building LM in MT, ASR, OCR,
spell checker, and using in morphological
analysis

Languages: Chomsky hierarchy
of classes of formal grammars

● Regular Grammar
● Context-Free Grammar
● Context-Sensitive Grammar
● Phrase Structure Grammar

Each formal grammar consists of:
● a finite set of production rules (left-hand side and right-hand side) where

each side consists of a sequence of these symbols
● a finite set of nonterminal symbols (indicating that some production rule

can yet be applied)
● a finite set of terminal symbols (indicating that no production rule can be

applied)
● a start symbol (a distinguished nonterminal symbol)

Languages

Grammar Languages Automaton
Recognizer

Production rules
Constraint

Type-0 Unrestricted /
Recursively
enumerable

Turing machine a --> b

no restrictions

Type-1 Contest-Sensitive Linear-bounded
nondeterministic
turing machine

aAb --> acb

Type-2 Context-Free Nondeterministic
pushdown
automaton

A --> a

Type-3 Regular Finite state machine A --> a
A --> aB

Q: differences between R and CF is the
stack? Why!

Example CFG
Here is a context-free grammar for syntactically correct infix algebraic expressions in the variables x, y and z:

1. S → x
2. S → y
3. S → z
4. S → S + S
5. S → S - S
6. S → S * S
7. S → S / S
8. S → (S)

This grammar can, for example, generate the string
(x + y) * x - z * y / (x + x)

as follows:
S (the start symbol)
→ S - S (by rule 5)
→ S * S - S (by rule 6, applied to the leftmost S)
→ S * S - S / S (by rule 7, applied to the rightmost S)
→ (S) * S - S / S (by rule 8, applied to the leftmost S)
→ (S) * S - S / (S) (by rule 8, applied to the rightmost S)
→ (S + S) * S - S / (S) (etc.)
→ (S + S) * S - S * S / (S)
→ (S + S) * S - S * S / (S + S)
→ (x + S) * S - S * S / (S + S)
→ (x + y) * S - S * S / (S + S)
→ (x + y) * x - S * y / (S + S)
→ (x + y) * x - S * y / (x + S)
→ (x + y) * x - z * y / (x + S)
→ (x + y) * x - z * y / (x + x) parse tree?

Phrase Structure

● term for grammars as defined by phrase
structure rules

● Constituency relation
○ word or group of words that represent a unit,

can make up larger grammatical units
● Dependency relation

○ one-to-one correspondence
○ for every element (word or morph) in a

sentence, there is just one node in the
syntactic structure

Example
The constituency tree on the left could be generated by
phrase structure rules. The sentence S is broken down into
smaller and smaller constituent parts. The dependency tree
on the right could not, in contrast, be generated by phrase
structure rules (at least not as they are commonly
interpreted).

Algorithms: Recursive Descent
Parsing

● top-down parser
● predictive parser

○ no backtracking
○ LL(k) grammar
○ context free
○ no left recursion

● Recursive descent with backup technique
○ backtracking
○ may not terminate at all, unless the

grammar is LL(k)
○ may take exponential time

LR Parser

● bottom-up parser
● efficiently handle deterministic context free

language
● linear time

For the exam, you need to know the
differences!

